ON THE FORMATION OF A NEW HETEROCYCLIC RING SYSTEM: REACTIONS AND THE CRYSTAL STRUCTURE OF 3-BENZOYLIMINO-4-METHYL-PERHYDRO-1,2,4-OXATHIAZINE

Sándor Sólyom, Pál Sohár and Lajos Toldy Research Institute for Pharmaceutical Chemistry H-1325-Budapest, POB 82., Hungary

Alajos Kálmán* and László Párkányi
Central Research Institute for Chemistry, Hungarian
Academy of Sciences, H-1525-Budapest, POB 17., Hungary
(Received in UK 29 September 1977; accepted for publication 6 October 1977)

A synthesis of 1,2,4-oxathiazines as a new class of heterocyclic compounds - the cyclic analogues of the open chained sulfenic acid esters - has been developed by oxidizing N-acyl-N'-(β -hydroxyethyl)-thioureas with bromine. So e.g. oxidation of compound 1¹ (Figure 1) in pyridine with bromine produced the title compound² (hereinafter 2). The structure of 2 (mp: 173°) was inferred from chemical and spectroscopic³ investigations.

Because of the presence of the monothioperoxide group, 2 liberates iodine from KI and can be titrated iodometrically. Reduction of 2 with NaBH₄ resulted in 1 (50% yield) and also produced some elemental sulphur. The reaction of 2 with nBu₃P yielded 3 (mp: 85°) quantitatively. Structure 3 was proved by the

yc=0 and yc=N absorption (1635 and 1590 cm⁻¹), the AA'BXX' type multiplet of the benzoyl protons 4 and also by the absorption of the OCH₂ group in the ¹H- and ¹³C-n.m.r. (4.50 and 65.6 ppm) spectra. The less nucleophilic Ph₃P transformed 2 in a slower reaction (5-6 days) into a homogeneous product 4 (mp:111°) with a yield of about 40%. 5 as a possible product of this reaction had to be rejected due the absence of the AA'BXX' multiplet of the ring protons in ¹H- n.m.r. which is characteristic of the analogous compound 3. This conclusion was corroborated by two independent syntheses of 5 (mp: 101-2°) as depicted in Figure 1. The structure 4 was finally established by an other synthesis by benzo-ylating the known 1-methyl-imidazolidin-2-thione⁵.

Although a carbonyl-carbon signal at 177.3 ppm was found in the ¹³C-n.m.r. of 2, the absence of the i.r. absorption in the region of 1600-1800 cm⁻¹ and the novelty of the heterocyclic ring system claimed to corroborate the molecular structure by X-ray diffraction.

The structure was solved with XTL version of MULTAN supplied by Syntex and refined to R = 0.060 for 2257 reflexions with I - 1.96 σ (I)>0 out of the total 3220 intensities recorded on a Syntex P2₁ diffractometer using MoK $_{\overline{X}}$ radiation. The lattice parameters are: \underline{a} = 7.402(1), \underline{b} = 10.916(2), \underline{c} = 14.827(2) $^{\Omega}$, β = 112.83(2) $^{\Omega}$, $D_{\underline{x}}$ = 1.42, $D_{\underline{m}}$ = 1.40 g.cm $^{-3}$, Z = 4, space group P2₁/c, F(000) = 496, μ (MoK $_{\overline{X}}$, λ = 0.71069 $^{\Omega}$) = 2.8 cm $^{-1}$. Fractional coordinates of the heavy atoms are given in Table 1, the hydrogen coordinates (the methyl hydrogens were located in a difference map, while the positions of the others were generated) are presented in Table 2. The structure obtained (Figure 2) confirmed formula 2 and revealed a rather short intramolecular S...0 approach (2.255 $^{\Omega}$) which is considerably less than the sum of the van der Waals radii (ca. 3.25 $^{\Omega}$). This strong S...0 interaction with a σ -bond order 7 of 0.64 and the accompanying increased C=0 distance (1.247 $^{\Omega}$) explain the anomalous i.r. spectra and suggest that the 2 \leftrightarrow 2° mesomerism may be taken also into account in the description of the molecular structure.

The oxathiazine ring is of a half-chair conformation with low asymmetry parameter ($\Delta c_2 = 1.25^{\circ}$)⁸. The C=O group forms a five-membered ring with the S(2)-C(3)-N(7) moiety which has a flat envelope conformation [Δ = 17.8° if

 $\phi_{\rm O}$ is signed to the rotation about S(2) - O(9)]. The plane of the phenyl ring [maximum deviation from the least-squares plane: 1.5860X + 8.6555Y + 8.0584Z + 0.4836 = 0 is 0.006 %] is tilted to the best plane [3.1162X - 6.9723Y + 6.3792Z - 1.3606 = 0] of the five-membered ring by an angle of 12.6°. Due to the strong interaction between the thiourea group and the benzoyl moiety no localized exocyclic (with respect to the six-membered ring) C=N double bond could be formed, which is characteristic in the case of the rather similar 2-arylimino-1,3-thiazines of the endocyclic oxygen is replaced by a CH₂ group. As can be seen a strong delocalized multiple bond system is formed on the five-membered ring extending also to the N(4) atom.

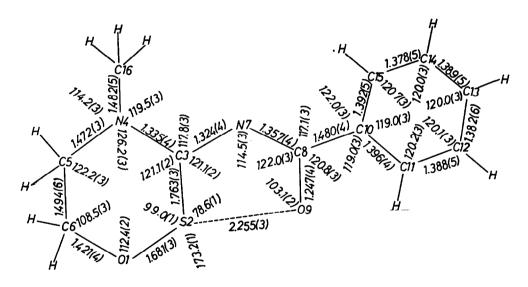


Figure 2. Atomic distances and bond angles with their e.s.d.'s

Table 1. Atomic coordinates (x104) and their e.s.d.'s for heavy atoms

	x	У	z		x	У	z
0(1)	7092(4)	1154(2)	0445(2)	0(9)	10126(3)	4123(2)	1575(2)
S(2)	8250 (1)	2479(1)	0893(1)	C(10)	13056(4)	4958(3)	1336(2)
C(3)	9713(4)	2578(3)	0199(2)	Ø(11)	13251(5)	5779(3)	2290(2)
N(4)	9435(4)	1820(2)	-0550(2)	C(12)	14890(6)	6528(3)	2666(2)
C(5)	7811(5)	0944(3)	-0970(2)	C(13)	16353(5)	6448(3)	2308(2)
c(6)	6229(5)	1144(4)	-0595(3)	C(14)	16176(5)	5626(3)	1564(2)
N(7)	11164(4)	3380(2)	0422(2)	C(15)	15542(5)	4889(3)	1183(2)
c(8)	11332(4)	4137(3)	1177(2)	c(16)	10785(6)	1871(4)	-1071(3)

	x	У	z	с-н(Я)		x	У	z	C-H(A)	
H(5A)	726	100	-171	1.01	H(13)	1756	698	259	1.01	
H(5B)	834	800	-079	1.02	H(14)	1724	556	130	1.01	
H(6A)	554	196	-085	1.02	H(15)	1441	430	063	1.02	
H(6B)	518	048	-084	1.02	H(16A)	1076	135	-154	1.02	
H(11)	12 18	583	256	1.02	H(16B)	1192	221	-077	1.02	
H(12)	1502	713	321	1.01	H(16C)	1100	135	-173	1.09	

Table 2. Atomic coordinates $(x10^3)$ and C-H distances for the hydrogen atoms

Notes and References

- 1. Compound 1 (mp: 133°) was prepared by the reaction of 2-(methylamino)-ethanol with benzoylisothiocyanate.
- 2. An other 1,2,4-oxathiazine derivative [3-(3,4,5-trimethoxybenzoylimino)--4-methyl-perhydro-1,2,4-oxathiazine (mp: 165°)] was prepared analogously from 1-methyl-1-(β -hydroxyethyl)-3-(3,4,5-trimethoxybenzoyl)thiourea (mp: 158°).
- 3. All compounds have correct analytical data; mp.'s are not corrected. The i.r. spectra were obtained on a Perkin-Elmer 577, the 1H-n.m.r. spectra etc. were recorded on a JEOL 60-HL and the 13C-n.m.r. spectra on a Varian XL-100 FT instrument.
- 4. Peaks of the ortho-protons (480-500 Hz) separate well from those of the meta and para protons (430-455 Hz) giving AA'BXX' type multiples, characteristic for benzoyl compounds, as a result of the anisotropic effect of the carbonyl group; see P. Sohár: Nuclear Magnetic Resonance Spectroscopy (in Hungarian), Akadémiai Kiadó, Budapest, 1976, p. 477.
- 5. A.F. McKay, M.E. Kreling, J. Org. Chem., 22, 1581 (1957).
- 6. Several further examples of abnormally short (2.03-2.67 Å) approaches between formally nonbonded S and O atoms have been reported so far, cf. e.g. A. Atkinson, A.C. Brewster, S.V. Ley, R.S. Osborn, D. Rogers, D.J. Williams, and K.A. Woode, <u>J.C.S. Chem. Comm.</u>, 325 (1977) and references herein.
- 7. A. Hordvik and H. Kjøge, Acta Chem. Scand., 20, 1923 (1966).
- 8. W.L. Duax, C.M. Weeks and D.S. Rohrer, <u>In Topics in Stereochemistry</u>, Vol. 9. ed. by N.L. Allinger and E.L. Eliel, pp. 271-383, J. Wiley & Sons, New York (1976).
- 9. C. Altona, H.J. Geise and C. Romers, Tetrahedron, 24, 13 (1968).
- 10. A. Kálmán, Gy. Argay, B. Ribár and L. Toldy, <u>Tetrahedron Letters</u>, (1977) and references herein.